Control of malting barley Fusarium head blight by bioagents
DOI:
https://doi.org/10.18832/kp2023.69.747Keywords:
Hordeum vulgare L., FHB, mycotoxins, fungi, crop health, resistanceAbstract
The routine and prophylactic use of fungicides in cereals leads to increased aggressiveness of Fusarium infections. Cross-resistance to triazole compounds represents a significant health risk to both plants and humans. The application of some widely used fungicides causes increased production of DON. Residual concentrations of hydrophobic triazoles change chemical profile of malt and cause delayed fermentation with an impact on alcohol content. Increasing legislative restrictions of pesticide applications encourage the search for alternatives, starting with the overview of current state of knowledge on biological protection against Fusarium spp. Despite the fact that bioagents have been researched intensively, including field applications and several registrations, biological preparations for disease control against Fusarium head blight (FHB) of malting barley are not used on a mass scale. Generally, bioagents appear to be quite sensitive to environmental changes and soil variability, which causes problems with the evaluation of their effectiveness under field conditions. For efficient disease control of malting barley, the application based on biopreparations registered against FHB combined with weather prediction system can be recommended. With an emphasis on the occurrence of Fusarium graminearum as a key producer of deoxynivalenol (DON), the prediction system for malting barley should be employed from plant emerging to milk stage. When predicting a high incidence of the pathogen, chemical intervention must be considered. However, repeated application of bioagents in field conditions together with the implementation of bioagents directly into the malting process proved to be a promising way to decrease chemical interventions from the cultivation of malting barley.
References
Al-Hatmi, A.M.S., de Hoog, G.S., Meis, J.F. (2019). Multiresistant Fusarium pathogens on plants and humans: solutions in (from) the antifungal pipeline? Infection and Drug Resistance, 12, 3727–3737. https://doi.org/10.2147/IDR.S180912
Audenaert, K., Callewaert, E., Hofte, M., De Saeger, S., Haesaert, G. (2010). Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum. BMC Microbiology, 10, 112. https://doi.org/10.1186/1471-2180-10-112
Belonoznikova, K., Hyskova, V., Chmelik, J., Kavan, D., Cerovska, N., Ryslava, H. (2022). Pythium oligandrum in plant protection and growth promotion: Secretion of hydrolytic enzymes, elicitors and tryptamine as auxin precursor. Microbiological Research, 258, 126976. https://doi.org/10.1016/j.micres.2022.126976
Bindereif, S.G., Rull, F., Kolb, P., Koberle, L., Willms, H., Steidele, S., Schwarzinger, S., Gebauer, G. (2021). Impact of global climate change on the european barley market requires novel multi-method approaches to preserve crop quality and authenticity. Foods, 10(7), 1592. https://doi.org/10.3390/foods10071592
Bondalapati, K.D., Stein, J.M., Neate, S.M., Halley, S.H., Osborne, L.E., Hollingsworth, C.R. (2012). Development of weather-based predictive models for Fusarium head blight and deoxynivalenol accumulation for spring malting barley. Plant Disease, 96(5), 673–680. https://doi.org/10.1094/PDIS-05-11-0389
Brožová, J. (2002). Exploitation of the mycoparasitic fungus Pythium oligandrum in plant protection. Plant Protection Science, 38(1), 29–35.
Byrne, M.B., Thapa, G., Doohan, F.M., Burke, J.I. (2022). Lactic acid bacteria as potential biocontrol agents for Fusarium head blight disease of spring barley. Frontiers in Microbiology, 13, 912632. https://doi.org/10.3389/fmicb.2022.912632
Caldwell, C.D., MacDonald, D., Jiang, Y., Cheema, M.A., Li, J. (2017). Effect of fungicide combinations for Fusarium head blight control on disease incidence, grain yield, and quality of winter wheat, spring wheat, and barley. Canadian Journal of Plant Science, 97(6), 1036–1045. https://doi.org/10.1139/cjps-2017-0001
Cambaza, E. (2018). Comprehensive description of Fusarium graminearum pigments and related compounds. Foods, 7(10), 165. https://doi.org/10.3390/foods7100165
Cech, R., Leisch, F., Zaller, J.G. (2022). Pesticide use and associated greenhouse gas emissions in sugar beet, apples, and viticulture in Austria from 2000 to 2019. Agriculture-Basel, 12(6), 879. https://doi.org/10.3390/agriculture12060879
Cendoya, E., Nichea, M.J., Monge, M.D., Zachetti, V.G.L., Chiacchiera, S.M., Ramirez, M.L. (2021). Effect of fungicides commonly used for Fusarium head blight management on growth and fumonisin production by Fusarium proliferatum. Revista Argentina de Microbiología, 53(1), 64–74. https://doi.org/10.1016/j.ram.2019.12.005
Colombo, E.M., Kunova, A., Cortesi, P., Saracchi, M., Pasquali, M. (2019b). Critical assessment of Streptomyces spp. able to control toxigenic Fusaria in cereals: A literature and patent review. International Journal of Molecular Sciences, 20(24), 6119. https://doi.org/10.3390/ijms20246119
Colombo, E.M., Kunova, A., Gardana, C., Pizzatti, C., Simonetti, P., Cortesi, P., Saracchi, M., Pasquali, M. (2020). Investigating Useful properties of four Streptomyces strains active against Fusarium graminearum growth and deoxynivalenol production on wheat grains by qPCR. Toxins, 12(9), 560. https://doi.org/10.3390/toxins12090560
Colombo, E.M., Kunova, A., Pizzatti, C., Saracchi, M., Cortesi, P., Pasquali, M. (2019). Selection of an endophytic Streptomyces sp. strain DEF09 from wheat roots as a biocontrol agent against Fusarium graminearum. Frontiers in Microbiology, 10, 2356. https://doi.org/10.3389/fmicb.2019.02356
Culley, T.M., Klooster, M.R. (2007). The Cleistogamous breeding system: A review of its frequency, evolution, and ecology in angiosperms. The Botanical Review, 73(1), 1–30. https://doi.org/10.1663/0006-8101(2007)73[1:TCBSAR]2.0.CO;2
Deising, H.B., Reimann, S., Pascholati, S.F. (2008). Mechanisms and significance of fungicide resistance. Brazilian Journal of Microbiology, 39(2), 286–295. https://doi.org/10.1590/S1517-83822008000200017
Drechsler, C. (1946). Several species of Pythium peculiar in their sexual development. Phytopathology, 36(10), 781–864.
Dutilloy, E., Oni, F.E., Esmaeel, Q., Clement, C., Barka, E.A. (2022). Plant beneficial bacteria as bioprotectants against wheat and barley diseases. Journal of Fungi, 8(6), 632. https://doi.org/10.3390/jof8060632
Edwards, S.G., Pirgozliev, S.R., Hare, M.C., Jenkinson, P. (2001). Quantification of trichothecene-producing Fusarium species in harvested grain by competitive PCR to determine efficacies of fungicides against Fusarium head blight of winter wheat. Applied and Environmental Microbiology, 67(4), 1575–1580. https://doi.org/10.1128/AEM.67.4.1575-1580.2001
EFSA (European Food Safety Authority), 2017. Conclusion on the peer review of the pesticide risk assessment of the active substance Pseudomonas chlororaphis MA 342. EFSA Journal, 15(1), 4668.
Ehrenbergerova, J., Belcredi, N.B., Psota, V., Hrstkova, P., Cerkal, R., Newman, C.W. (2008). Changes caused by genotype and environmental conditions in beta-glucan content of spring barley for dietetically beneficial human nutrition. Plant Foods for Human Nutrition, 63(3), 111–117. https://doi.org/10.1007/s11130-008-0079-7
Fan, J.R., Urban, M., Parker, J.E., Brewer, H.C., Kelly, S.L., Hammond-Kosack, K.E., Fraaije, B.A., Liu, X.L., Cools, H.J. (2013). Characterization of the sterol 14 alpha-demethylases of Fusarium graminearum identifies a novel genus-specific CYP51 function. New Phytologist, 198(3), 821–835. https://doi.org/10.1111/nph.12193
Fernando, W.G.D., Oghenekaro, A.O., Tucker, J.R., Badea, A. (2021). Building on a foundation: advances in epidemiology, resistance breeding, and forecasting research for reducing the impact of Fusarium head blight in wheat and barley. Canadian Journal of Plant Pathology, 43(4), 495–526. https://doi.org/10.1080/07060661.2020.1861102
Foroutan, A. (2006). Effect of Pseudomonas fluorescens on barley root rots. Asian Journal of Plant Sciences, 5(5), 740–744. https://doi.org/10.3923/ajps.2006.740.744
Fravel, D., Olivain, C., Alabouvette, C. (2003). Fusarium oxysporum and its biocontrol. New Phytologist, 157(3), 493–502. https://doi.org/10.1046/j.1469-8137.2003.00700.x
Gauthier, G.M., Keller, N.P. (2013). Crossover fungal pathogens: The biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans. Fungal Genetics and Biology, 61, 146–157. https://doi.org/10.1016/j.fgb.2013.08.016
Giraldo, P., Benavente, E., Manzano-Agugliaro, F., Gimenez, E. (2019). Worldwide research trends on wheat and barley: A bibliometric comparative analysis. Agronomy-Basel, 9(7), 352. https://doi.org/10.3390/agronomy9070352
Havlova, P., Lancova, K., Vanova, M., Havel, J., Hajslova, J. (2006). The effect of fungicidal treatment on selected quality parameters of barley and malt. Journal of Agricultural and Food Chemistry, 54(4), 1353–1360. https://doi.org/10.1021/jf0581372
Hellin, P., King, R., Urban, M., Hammond-Kosack, K.E., Legreve, A. (2018). The adaptation of Fusarium culmorum to DMI fungicides is mediated by major transcriptome modifications in response to azole fungicide, including the overexpression of a PDR transporter (FcABC1). Frontiers in Microbiology, 9, 1385. https://doi.org/10.3389/fmicb.2018.01385
Henkes, G.J., Jousset, A., Bonkowski, M., Thorpe, M.R., Scheu, S., Lanoue, A., Schurr, U., Rose, U.S. (2011). Pseudomonas fluorescens CHA0 maintains carbon delivery to Fusarium graminearum-infected roots and prevents reduction in biomass of barley shoots through systemic interactions. Journal of Experimental Botany, 62(12), 4337–4344. https://doi.org/10.1093/jxb/err149
Hoyer, A.K., Jorgensen, H.J.L., Hodkinson, T.R., Jensen, B. (2022). Fungal endophytes isolated from Elymus repens, a wild relative of barley, have potential for biological control of Fusarium culmorum and Pyrenophora teres in barley. Pathogens, 11(10), 1097. https://doi.org/10.3390/pathogens11101097
Illescas, M., Pedrero-Mendez, A., Pitorini-Bovolini, M., Hermosa, R., Monte, E. (2021). Phytohormone production profiles in Trichoderma species and their relationship to wheat plant responses to water stress. Pathogens, 10(8), 991. https://doi.org/10.3390/pathogens10080991
Islam, M.N., Banik, M., Sura, S., Tucker, J.R., Wang, X.B. (2022). Implications of crop rotation and fungicide on Fusarium and mycotoxin spectra in Manitoba barley, 2017–2019. Toxins, 14(7), 463. https://doi.org/10.3390/toxins14070463
Janssen, E.M., Liu, C., Van der Fels-Klerx, H.J. (2018). Fusarium infection and trichothecenes in barley and its comparison with wheat. World Mycotoxin Journal, 11(1), 33–46. https://doi.org/10.3920/WMJ2017.2255
Ji, F., He, D., Olaniran, A.O., Mokoena, M.P., Xu, J.H., Shi, J.R. (2019). Occurrence, toxicity, production and detection of Fusarium mycotoxin: a review. Food Production, Processing and Nutrition, 1(1), 6. https://doi.org/10.1186/s43014-019-0007-2
Jimenez-Quiros, C., Okechukwu, E.C., Hong, Y.G., Baysal, O., Tor, M. (2022). Comparison of antifungal activity of Bacillus strains against Fusarium graminearum in vitro and in planta. Plants-Basel, 11(15), 1999. https://doi.org/10.3390/plants11151999
Karron, E., Sondergaard, T., Sorensen, J.L., Giese, H., Kutt, M.L., Edesi, L., Loiveke, H., Lauringson, E. (2017). The effects of nitrogen rates and intercropping on the occurrence of Fusarium spp. on barley kernels. Agronomy Research, 15(S2), 1267–1275.
Khan, M.R., Doohan, F.M. (2009). Bacterium-mediated control of Fusarium head blight disease of wheat and barley and associated mycotoxin contamination of grain. Biological Control, 48(1), 42–47. https://doi.org/10.1016/j.biocontrol.2008.08.015
Khan, M.R., Fischer, S., Egan, D., Doohan, F.M. (2006). Biological control of Fusarium seedling blight disease of wheat and barley. Phytopathology, 96(4), 386–394. https://doi.org/10.1094/PHYTO-96-0386
Klittich, C.J. (2008). Milestones in fungicide discovery: Chemistry that changed agriculture. Plant Health Progress, 9(1). https://doi.org/10.1094/PHP-2008-0418-01-RV
Kong, Z.Q., Li, M.M., An, J.J., Chen, J.Y., Bao, Y.M., Francis, F., Dai, X.F. (2016a). The fungicide triadimefon affects beer flavor and composition by influencing Saccharomyces cerevisiae metabolism. Scientific Report, 6, 33552. https://doi.org/10.1038/srep33552
Kong, Z.Q., Li, M.M., Chen, J.Y., Bao, Y.M., Fan, B., Francis, F., Dai, X.F. (2016b). Processing factors of triadimefon and triadimenol in barley brewing based on response surface methodology. Food Control, 64, 81–86. https://doi.org/10.1016/j.foodcont.2015.12.021
Kostelanska, M., Hajslova, J., Zachariasova, M., Malachova, A., Kalachova, K., Poustka, J., Fiala, J., Scott, P.M., Berthiller, F., Krska, R. (2009). Occurrence of deoxynivalenol and its major conjugate, deoxynivalenol-3-glucoside, in beer and some brewing intermediates. Journal of Agricultural and Food Chemistry, 57(8), 3187–3194. https://doi.org/10.1021/jf803749u
Kulisova, M., Kolouchova, I. (2021). Genus Pythium with focus on its mycoparasitism. Chemické Listy, 115(5), 254–259.
Kulik, T., Lojko, M., Jestoi, M., Perkowski, J. (2012). Sublethal concentrations of azoles induce tri transcript levels and trichothecene production in Fusarium graminearum. FEMS Microbiol. Lett., 335(1), 58–67. https://doi.org/10.1111/j.1574-6968.2012.02637.x
Lazaro, E., Makowski, D., Vicent, A. (2021). Decision support systems halve fungicide use compared to calendar-based strategies without increasing disease risk. Communications Earth & Environment, 2(1), 224. https://doi.org/10.1038/s43247-021-00291-8
Malachova, A., Hajslova, J., Ehrenbergerova, J., Kostelanska, M., Zachariasova, M., Urbanova, J., Cerkal, R., Safrankova, I., Markova, J., Vaculova, K., Hrstkova, P. (2010). Fusarium mycotoxins in spring barley and their transfer into malt. Kvasny Prumysl, 56(3), 131–137. https://doi.org/10.18832/kp2010018
Marzec-Schmidt, K., Borjesson, T., Suproniene, S., Jedryczka, M., Janaviciene, S., Goral, T., Karlsson, I., Kochiieru, Y., Ochodzki, P., Mankeviciene, A., Piikki, K. (2021). Modelling the Effects of weather conditions on cereal grain contamination with deoxynivalenol in the Baltic Sea region. Toxins, 13(11), 737. https://doi.org/10.3390/toxins13110737
Mastanjevic, K., Krstanovic, V., Mastanjevic, K., Sarkanj, B. (2018a). Malting and brewing industries encounter Fusarium spp. Related Problems. Fermentation, 4(1), 3. https://doi.org/10.3390/fermentation4010003
Mastanjevic, K., Krstanovic, V., Lukinac, J., Mastanjevc, K. (2018b). Impact of Fusarium infection and fungicide treatment on wheat malt wort quality. Journal of the Institute of Brewing, 124(3), 204–208. https://doi.org/10.1002/jib.492
Mastanjevic, K., Mastanjevic, K., Krstanovic, V. (2017). The gushing experience-A quick overview. Beverages, 3(2), 25. https://doi.org/10.3390/beverages3020025
Matarese, F., Sarrocco, S., Gruber, S., Seidl-Seiboth, V., Vannacci, G. (2012). Biocontrol of Fusarium head blight: interactions between Trichoderma and mycotoxigenic Fusarium. Microbiology-(UK), 158, 98–106. https://doi.org/10.1099/mic.0.052639-0
Mellor, D.D., Hanna-Khalil, B., Carson, R. (2020). A review of the potential health benefits of low alcohol and alcohol-free beer: effects of ingredients and craft brewing processes on potentially bioactive metabolites. Beverages, 6(2), 25. https://doi.org/10.3390/beverages6020025
Modrzewska, M., Bryla, M., Kanabus, J., Pierzgalski, A. (2022). Trichoderma as a biostimulator and biocontrol agent against Fusarium in the production of cereal crops: Opportunities and possibilities. Plant Pathology, 71(7), 1471–1485. https://doi.org/10.1111/ppa.13578
Mulk, S., Wahab, A., Yasmin, H., Mumtaz, S., El-Serehy, H.A., Khan, N., Hassan, M.N. (2022). Prevalence of wheat associated Bacillus spp. and their bio-control efficacy against Fusarium root rot. Frontiers in Microbiology, 12, 798619. https://doi.org/10.3389/fmicb.2021.798619
Musa, T., Hecker, A., Vogelgsang, S., Forrer, H.R. (2007). Forecasting of Fusarium head blight and deoxynivalenol content in winter wheat with FusaProg*. EPPO Bulletin, 37(2), 283–289.
Navarro, S., Pérez-Lucas, G., Vela, N., Navarro, G. (2015). Behavior of triazole fungicide residues from barley to beer. In Preedy, V. (Ed.) Processing and Impact on Active Components in Food (pp. 525–532). Academic Press, San Diego. ISBN 9780124046993.
Navarro, S., Vela, N., Perez, G., Navarro, G. (2011). Effect of sterol biosynthesis-inhibiting (SBI) fungicides on the fermentation rate and quality of young ale beer. Food Chemistry, 126(2), 623–629. https://doi.org/10.1016/j.foodchem.2010.11.069
Newitt, J.T., Prudence, S.M.M., Hutchings, M.I., Worsley, S.F. (2019). Biocontrol of cereal crop diseases using Streptomycetes. Pathogens, 8(2), 78. https://doi.org/10.3390/pathogens8020078
Ng, C.A., Postulkova, M., Matoulkova, D., Psota, V., Hartman, I., Branyik, T. (2021a). Methods for suppressing Fusarium infection during malting and their effect on malt quality. Czech Journal of Food Sciences, 39(5), 340–359. https://doi.org/10.17221/221/2020-CJFS
Ng, C.A., Pernica, M., Yap, J., Belakova, S., Vaculova, K., Branyik, T. (2021b). Biocontrol effect of Pythium oligandrum on artificial Fusarium culmorum infection during malting of wheat. Journal of Cereal Science, 100, 103258. https://doi.org/10.1016/j.jcs.2021.103258
Nielsen, L.K., Cook, D.J., Edwards, S.G., Ray, R.V. (2014). The prevalence and impact of Fusarium head blight pathogens and mycotoxins on malting barley quality in UK. International Journal of Food Microbiology, 179, 38–49. https://doi.org/10.1016/j.ijfoodmicro.2014.03.023
Ntushelo, K., Ledwaba, L.K., Rauwane, M.E., Adebo, O.A., Njobeh, P.B. (2019). The mode of action of Bacillus species against Fusarium graminearum, tools for investigation, and future prospects. Toxins, 11(10), 606. https://doi.org/10.3390/toxins11100606
Nucci, M., Anaissie, E. (2007). Fusarium infections in immunocompromised patients. Clinical Microbiology Reviews, 20(4), 695–704. https://doi.org/10.1128/CMR.00014-07
Oancea, F., Raut, I., Sesan, T., Badea Doni, M., Popescu, M., Zamfiropol Cristea, V., Jecu, L. (2017). Formulation of the multi-functional Trichoderma strains. In Sesan, T. E., (Ed.) Trichoderma spp. Applications in Agriculture and Horticulture (pp. 384–414). Editura Universitatii, Bucharest
Oros, G., Naar, Z. (2017). Mycofungicide: Trichoderma based preparation for foliar applications. American Journal of Plant Sciences, 8, 113–125. https://doi.org/10.4236/ajps.2017.82009
Palladino, C., Puigvert, F., Muela, A., Taborda, B., Perez, C.A., Perez-Parada, A., Pareja, L. (2021). Evaluation of Fusarium mycotoxins and fungicide residues in barley grain produced in Uruguay. Journal of Agriculture and Food Research, 3, 100092. https://doi.org/10.1016/j.jafr.2020.100092
Pascari, X., Marin, S., Ramos, A.J., Sanchis, V. (2022). Relevant Fusarium mycotoxins in malt and beer. Foods, 11(2), 246. https://doi.org/10.3390/foods11020246
Pellan, L., Dieye, C.A.T., Durand, N., Fontana, A., Schorr-Galindo, S., Strub, C. (2021). Biocontrol agents reduce progression and mycotoxin production of Fusarium graminearum in Spikelets and straws of wheat. Toxins, 13(9), 597. https://doi.org/10.3390/toxins13090597
Petti, C., Khan, M., Doohan, F. (2010). Lipid transfer proteins and protease inhibitors as key factors in the priming of barley responses to Fusarium head blight disease by a biocontrol strain of Pseudomonas fluorescens. Functional & Integrative Genomics, 10(4), 619–627. https://doi.org/10.1007/s10142-010-0177-0
Pfordt, A., Romero, L.R., Schiwek, S., Karlovsky, P., von Tiedemann, A. (2020). Impact of environmental conditions and agronomic practices on the prevalence of Fusarium species associated with ear- and stalk rot in maize. Pathogens, 9(3), 236. https://doi.org/10.3390/pathogens9030236
Piacentini, K.C., Belakova, S., Benesova, K., Pernica, M., Savi, G.D., Rocha, L.O., Hartman, I., Caslavsky, J., Correa, B. (2019). Fusarium mycotoxins stability during the malting and brewing processes. Toxins, 11(5), 257. https://doi.org/10.3390/toxins11050257
Pinotti, L., Ottoboni, M., Giromini, C., Dell'Orto, V., Cheli, F. (2016). Mycotoxin contamination in the EU feed supply chain: A focus on cereal byproducts. Toxins, 8(2), 45. https://doi.org/10.3390/toxins8020045
Podgorska-Kryszczuk, I., Solarska, E., Kordowska-Wiater, M. (2022). Biological control of Fusarium culmorum, Fusarium graminearum and Fusarium poae by antagonistic yeasts. Pathogens, 11(1), 86. https://doi.org/10.3390/pathogens11010086
Postulkova, M., Rezanina, J., Fiala, J., Ruzicka, M.C., Dostalek, P., Branyik, T. (2018). Suppression of fungal contamination by Pythium oligandrum during malting of barley. Journal of the Institute of Brewing, 124(4), 336–340. https://doi.org/10.1002/jib.518
Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the sustainable use of plant protection products and amending Regulation (EU) 2021/2115.
Rani, H., Bhardwaj, R.D. (2021). Quality attributes for barley malt: "The backbone of beer". Journal of Food Science, 86(8), 3322–3340. https://doi.org/10.1111/1750-3841.15858
Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. Retrieved from https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32005R0396
Rey, P., Le Floch, G., Benhamou, N., Tirilly, Y. (2008). Pythium oligandrum biocontrol: its relationships with fungi and plants. In Barka, E.A., Clément, C. (Eds.), Plant-Microbe Interactions (pp. 43–67). Research Signpost, Trivandrum. ISBN 978-81-308-0212-1
Rush, T.A., Shrestha, H.K., Gopalakrishnan Meena, M., Spangler, M.K., Ellis, J.C., Labbe, J.L., Abraham, P.E. (2021). Bioprospecting Trichoderma: A Systematic Roadmap to Screen Genomes and Natural Products for Biocontrol Applications. Frontiers in Fungal Biology, 2, 716511. https://doi.org/10.3389/ffunb.2021.716511
Salanta, L.C., Coldea, T.E., Ignat, M.V., Pop, C.R., Tofana, M., Mudura, E., Borsa, A., Pasqualone, A., Zhao, H.F. (2020). Non-Alcoholic and craft beer production and challenges. processes, 8(11), 1382. https://doi.org/10.3390/pr8111382
Schisler, D.A., Core, A.B., Boehm, M.J., Horst, L., Krause, C., Dunlap, C.A., Rooney, A.P. (2014). Population dynamics of the Fusarium head blight biocontrol agent Cryptococcus flavescens OH 182.9 on wheat anthers and heads. Biological Control, 70, 17–27. https://doi.org/10.1016/j.biocontrol.2013.11.011
Schisler, D.A., Khan, N.I., Boehm, M.J. Bacillus species nrrl b-30212 for reducing Fusarium head blight in cereals. US Patent 2003/0165470 A1, Sep. 4, 2003.
Schoneberg, T., Musa, T., Forrer, H.R., Mascher, F., Bucheli, T.D., Bertossa, M., Keller, B., Vogelgsang, S. (2018). Infection conditions of Fusarium graminearum in barley are variety specific and different from those in wheat. European Journal of Plant Pathology, 151(4), 975–989. https://doi.org/10.1007/s10658-018-1434-7
Shah, D.A., De Wolf, E.D., Paul, P.A., Madden, L.V. (2019). Functional data analysis of weather variables linked to Fusarium head blight epidemics in the United States. Phytopathology, 109(1), 96–110. https://doi.org/10.1094/PHYTO-11-17-0386-R
Tateishi, H., Miyake, T., Mori, M., Sakuma, Y., Saishoji, T. (2014). Effect of application timing of metconazole on Fusarium head blight development and mycotoxin contamination in wheat and barley. Journal of Pesticide Science, 39(1–2), 1–6. https://doi.org/10.1584/jpestics.D12-077
Tian, Y., Tan, Y.L., Liu, N., Yan, Z., Liao, Y.C., Chen, J., de Saeger, S., Yang, H., Zhang, Q.Y., Wu, A.B. (2016). Detoxification of deoxynivalenol via glycosylation represents novel insights on antagonistic activities of Trichoderma when confronted with Fusarium graminearum. Toxins, 8(11), 335. https://doi.org/10.3390/toxins8110335
Tian, Y., Tan, Y.L., Yan, Z., Liao, Y.C., Chen, J., De Boevre, M., De Saeger, S., Wu, A.B. (2018). Antagonistic and detoxification potentials of Trichoderma isolates for control of zearalenone (ZEN) producing Fusarium graminearum. Frontiers in Microbiology, 8, 2710. https://doi.org/10.3389/fmicb.2017.02710
Tyskiewicz, R., Nowak, A., Ozimek, E., Jaroszuk-Scisel, J. (2022). Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. International Journal of Molecular Sciences, 23(4), 2329. https://doi.org/10.3390/ijms23042329
Uemura, E.V.G., Barbosa, M.D., Simionatto, S., Al-Harrasi, A., Al-Hatmi, A.M.S., Rossato, L. (2022). Onychomycosis caused by Fusarium species. Journal of Fungi, 8(4), 360. https://doi.org/10.3390/jof8040360
Umar, A.A., Hussaini, A.B., Yahayya, J., Sani, I., Aminu, H. (2021). Chitinolytic and antagonistic activity of Streptomyces isolated from Fadama soil against phytopathogenic fungi. Tropical Life Sciences Research, 32(3), 25–38. https://doi.org/10.21315/apjee2021.32.3.2
Viaene, T., Langendries, S., Beirinckx, S., Maes, M., Goormachtig, S. (2016). Streptomyces as a plant's best friend? FEMS Microbiology Ecology, 92(8), fiw119. https://doi.org/10.1093/femsec/fiw119
Vishnevskaya, N., Shakhnazarova, V., Shaposhnikov, A., Strunnikova, O. (2020). The role of root exudates of barley colonized by Pseudomonas fluorescens in enhancing root colonization by Fusarium culmorum. Plants-Basel, 9(3), 366. https://doi.org/10.3390/plants9030366
Werner, B.T., Gaffar, F.Y., Schuemann, J., Biedenkopf, D., Koch, A.M. (2020). RNA-spray-mediated silencing of Fusarium graminearum AGO and DCL genes improve barley disease resistance. Frontiers in Plant Science, 11, 476. https://doi.org/10.3389/fpls.2020.00476
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Radim Cerkal, Zbyněk Gazdík, Tomáš Vymětal, Radoslav Koprna, Lea Lojková
This work is licensed under a Creative Commons Attribution 4.0 International License.