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Abstract

The routine and prophylactic use of fungicides in cereals leads to increased aggressiveness of Fusarium infections. 
Cross-resistance to triazole compounds represents a significant health risk to both plants and humans. The application 
of some widely used fungicides causes increased production of DON. Residual concentrations of hydrophobic 
triazoles change the chemical profile of malt and cause delayed fermentation with an impact on alcohol content. 
Increasing legislative restrictions of pesticide applications encourage the search for alternatives, starting with the 
overview of current state of knowledge on biological protection against Fusarium spp. Despite the fact that bioagents 
have been researched intensively, including field applications and several registrations, biological preparations 
for disease control against Fusarium head blight (FHB) of malting barley are not used on a mass scale. Generally, 
bioagents appear to be quite sensitive to environmental changes and soil variability, which causes problems with the 
evaluation of their effectiveness under field conditions. For efficient disease control of malting barley, the application 
based on biopreparations registered against FHB combined with weather prediction system can be recommended. 
With an emphasis on the occurrence of Fusarium graminearum as a key producer of deoxynivalenol (DON), the prediction 
system for malting barley should be employed from plant emerging to milk stage. When predicting a high incidence 
of the pathogen, chemical intervention must be considered. However, repeated application of bioagents in field 
conditions together with the implementation of bioagents directly into the malting process proved to be a promising 
way to decrease chemical interventions from the cultivation of malting barley.
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1 Introduction

Despite recent covid issues, the development of mini- and/
or microscale breweries and increasing demand for non-
alcoholic beer caused record breaking prices in global 
markets. While until the 1970s, much more patents 
and scientific documents were dedicated to the wheat, 
from the 1970s to the beginning of the 21st century the 
ratio of patents and scientific document was similar in 
both crops, showing an increasing industrial interest in 
barley, and during the last decade the focus to barley has 
at least doubled compared to wheat (Giraldo et al., 2019). 
 The innovations in malting procedures brought new 
products that caused a shift from homogeneous beer 

production to increased consumer demand for a larger 
variety of beer, with craft and micro-brewing becoming 
increasingly popular (Mellor et al., 2020). Emerging 
health-oriented lifestyle trends, demographics, stricter 
legislation, religious prohibitions, and consumer 
preferences have led to a strong and steady growth 
of interest in non-alcoholic beers (Salanta et al., 
2020). Plus, the potential to exploit the health benefits 
of whole grain and β-glucans is much higher here 
(Ehrenbergerova et al., 2008).
 Whereas recent climate change in Europe threatens 
the increasing malting industry which is highly sensitive 
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and vulnerable to malt barley supply (Bindereif et al., 
2021), strict requirements to maintain quality remain 
unchanged (Rani and Bhardwaj, 2021).
 Versatile microbiota is inevitably naturally present 
on cereals, influencing the malting quality parameters 
(Mastanjevic et al., 2018a). Fusarium spp. contamination 
of cereals increased in recent years, mainly in barley, 
wheat, maize, and oats (Piacentini et al., 2019). FHB 
is an important disease of barley (Hordeum vulgare L.) 
caused by a complex of toxigenic Fusarium spp. and 
non-toxigenic Microdochium spp. known to impact 
significantly upon the yield and several functional 
parameters of grain related to safety and brewing quality 
(Nielsen et al., 2014). Published data indicate a high 
variability according to the type of mycotoxins, the level 
and extent of fungal contamination and contaminated 
malt processing technologies (Pinotti et al., 2016).
 Germination is the malting step that leads to 
a significant increase of DON and zearalenone (ZEN) 
levels (Piacentini et al., 2019). The first step of mashing 
(45 °C) has the most significant impact on the transfer 
of hydrophilic toxins from the grist into the wort (Pascari 
et al., 2022). Besides toxic metabolites of Fusarium 
spp. classified as trichothecenes, ZEN, and fumonisins 
(Ji et al., 2019), aurofusarin and rubrofusarin pigments 
were identified as being contained in F. graminearum 
(Mastanjevic et al., 2018b) and found to add to the 
colour intensity of wort (Cambaza, 2018). As for sensory 
and physico-chemical stability of beer, another fungal 
products, hydrophobins, were identified as compounds 
that cause gushing (Mastanjevic et al., 2017). The presence 
of toxins produced by F. culmorum, F. graminearum or/and 
F. poae in barley kernels may negatively influence wort 
filterability, content of enzymes involved in starch 
and sugar processes, diastatic power, germination 
capacity contributing to free amino nitrogen in malt and 
a reduced growth of Saccharomyces cerevisiae, which 
leads to a delayed fermentation causing inhibition 
of ethanol synthesis (Ng et al., 2021a).
 Thus, the control of barley grain contamination 
by fungi such as Fusarium spp., particularly by 
those producing mycotoxins, secondary metabolites 
with adverse health effects, is of principal importance 
(Havlova et al., 2006).

2 Active ingredients used in fungicides  
 and their negative effects

Since the early 1800s, fungicides have repeatedly altered 
growing methods and farmers’ expectations of crop 
health (Klittich, 2008). Great results were reported for 

fungicide applications against FHB during last decades 
(Cendoya et al., 2021; Caldwell et al., 2017; Tateishi et 
al., 2014). Nowadays, synthetic antifungal compounds 
are often used routinely and prophylactically. Together 
with the induced antifungal resistance (Hellin et al., 2018; 
Deising et al., 2008) this practice decreased economic 
competitiveness of the crop, as well as biodiversity, and 
increased the environmental burden of greenhouse gas 
production (Cech et al., 2022; Lazaro et al., 2021).
 Trans-kingdom pathogenicity (Gauthier and 
Keller, 2013) clearly illustrates the danger associated 
with the broad-spectrum use of fungicides against 
Fusarium spp. Vertebrate infections, caused particularly 
by F. onychomycoses (Uemura et al., 2022; Al-Hatmi et al., 
2019), are rare, usually limited to a single organ and tend 
to respond well to the therapy. By contrast, disseminated 
fusariosis that affects the immunocompromised hosts, 
especially hematopoietic stem cell transplant recipients 
and patients with severe and prolonged neutropenia, 
is frequently fatal (Nucci and Anaissie, 2007). Many 
cases of intrinsic resistance to several antifungal drugs, 
antifungal resistance that developed gradually over the 
years and emerging issues of acquired resistance have 
been reported.
 Improper use of azoles, especially in agriculture, 
became a problem in recent decades (Al-Hatmi et al., 
2019). Three CYP51 gene paralogues of F. graminearum, 
FgCYP51B, were identified to be related to azole 
applications. The CYP51 gene encodes the enzyme 
primarily responsible for sterol 14α-demethylation, 
essential for ascospore formation. FgCYP51A is found 
in many human and agricultural pathogens. This gene 
is induced by azoles and environmental stress. It encodes 
sterol 14α-demethylase, can compensate the disruption 
of FgCYP51B function, and is responsible for intrinsic 
variation in sensitivity to different azoles. FgCYP51C, 
a Fusarium-specific CYP51 gene, does not influence 
sterol 14α-demethylase; it is specifically required for full 
aggressiveness on host wheat ears.
 Due to the treatment with subinhibitory 
concentrations of azoles, the expression of FgCYP51A was 
induced up to 30-fold by prochloraz and tebuconazole 
or 100-fold by epoxiconazole, compared to control (Fan 
et al., 2013). Some fungicide treatments caused increased 
levels of mycotoxins (Cendoya et al., 2021; Edwards et al., 
2001). A study using dilution series of prothioconazole, 
azoxystrobin and prothioconazole + fluoxastrobin 
demonstrated that sub-lethal doses of prothioconazole 
coincide with an increase in DON production 48 h after 
the fungicide treatment (Audenaert et al., 2010). Increased 
DON levels were found for in vitro trials using inoculated 
wheat plants treated with sub-lethal prothioconazole 
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doses, illustrating the significance of these results 
from a practical point of view. RT-qPCR showed 
changes of several factors regulating the biosynthesis 
of mycotoxins in F. graminearum isolates supplemented 
with sub-lethal concentrations of azoles compared (Kulik 
et al., 2012). The mycotoxin analysis revealed higher 
increase in trichothecene accumulation in most of the 
tebuconazole-treated samples.
 Most of the residua of water-soluble pesticides 
are eliminated from barley after steeping (Navarro 
et al., 2015), but hydrophobic residua remain 
in steeped grain. The impact of fungicidal treatment on 
malting quality was studied by Havlova et al. (2006). 
Tebuconazole preparations increased the gushing and 
higher content of oxalates, pentosans and ß-glucans 
was recorded versus the control. LC–MS/MS system 
was employed to examine 89 barley grain samples 
(Palladino et al., 2021). Residua of fungicidal active 
ingredients in concentrations under Regulation (EC) 
No 396/2005 limits were determined in 66 samples, 
mostly azoxystrobin, carbendazim, chlorothalonil, 
epoxiconazole, and fluxapyroxad. The influence of sterol 
biosynthesis inhibiting (SBI) compounds (cyproconazole, 
diniconazole, epoxiconazole, flutriafol, and tebuconazole; 
residua) on the fermentation and quality of young ale 
were studied. Noticeable effect of fungicide residues 
on the fermentation rate was observed in all cases. From 
the third day onwards, the fermentation rate was low 
and at the end of fermentation, statistically significantly 
different extract and attenuation values were obtained 
for all samples treated with fungicides. Higher amount 
of residual sugars, mainly maltose and maltotriose, was 
found in the beer (Navaro et al., 2011). Trace triadimefon 
residua influence metabolic activity of S. cerevisiae during 
fermentation and negatively affect beer sensory qualities 
(Kong et al., 2016a). In the presence of yeast, triadimefon 
degradation was faster (Kong et al., 2016b).
 The disadvantages of FHB chemical control to malting 
barley encourage annual preventive management including 
crop rotation (Islam et al., 2022), higher preferences of 
cleistogamous and two-rowed barley varieties (Janssen 
et al., 2018; Culley and Klooster, 2007), soil cultivation 
(Islam et al., 2022; Pfordt et al., 2020), fertilization (Karron 
et al., 2017), prevention of lodging (Janssen et al., 2018) 
and incorporating of alternative strategies, including 
biological methods to control the spread of Fusarium spp. 
pathogens (Uemura et al., 2022).
 Achieving a safe, sustainable, fair, climate responsible 
and affordable food production that respects the principles 
of sustainability, the environment, biodiversity, 
and ecosystems while ensuring food security, is an important 
topic, one of 49 proposals included to the final report of the 

Conference on the Future of Europe, published on May 9, 
2022. Protection and restoration of biological diversity, 
landscapes and oceans, pollution limitations and adoption 
of decisive measures to support and guarantee more 
ecological and climate-oriented agriculture is of utmost 
importance (Proposal for Regulation EU 2021/2115). 

3 The research highlights  
 and agricultural practice

A thorough understanding of the action mechanisms 
is needed to maximize consistency and efficacy 
of biocontrol (Fravel et al., 2003). Trichoderma species 
are well-studied model fungal organisms used for 
their biocontrol properties with great potential to 
alleviate the use of agrochemicals (Rush et al., 2021). 
The success of Trichoderma spp. as biocontrol agents 
(BCAs) in the soil ecosystems is based on rapid growth, 
utilization of various substrates, and resistance to many 
toxic chemicals, including fungicides (e.g., azoxystrobin, 
3,4-dichloroaniline, and trifloxystrobin), herbicides 
and other organic pollutants (Tyskiewicz et al., 2022). 
 Antibiotic and antimycotic effect of Trichoderma isolates 
were studied, showing the ability to inhibit DON production 
by F. graminearum and F. culmorum (Matarese et al., 2012). 
T. gamsii 6085 was selected in a gene expression study as the 
best of the genes encoding chitinolytic enzymes associated 
with mycoparasitism to F. culmorum and F. graminearum. 
According to the test, it is able to antagonize the pathogens 
on rice, but not on wheat. Tian et al. (2016) showed 
that DON could be bio-transformed into its modified 
form deoxynivalenol-3-glucoside (D3G) by Trichoderma 
isolates, which effectively suppressed the mycelial growth 
of F. graminearum. Some Trichoderma isolates bio-
transform ZEN not into glycosylated forms, but to reduced 
and sulfated form(s) (Tian et al., 2018). Several growth- 
and defense- related phytohormones were determined 
in the shoots of plants that were root-colonized by different 
Trichoderma isolates (Illescas et al., 2021).
 Despite the availability of Trichoderma-based 
preparations against phytopathogenic microbes (Oancea 
et al., 2017; Oros and Naar, 2017), a highly limited number 
of in vivo studies investigating their use for biocontrol 
of cereal crops remains an obstacle to commercialization 
of Trichoderma fungi. The determination of their 
effectiveness in the biocontrol of cereal crops under 
variable weather and climate conditions presents 
a considerable challenge (Modrzewska et al., 2022). 
 Pythium oligandrum (Drechsler, 1946) has been 
extensively studied for the capability to exert biological 
control (Belonoznikova et al., 2022; Kulisova 
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and Kolouchova, 2021). This complex process includes 
direct effects through the mycoparasitism in the 
rhizosphere (Rey et al., 2008; Brožová, 2002) and/or 
indirect effects mediated by P. oligandrum on the plant, i.e. 
induction of resistance and growth promotion (Rey et al., 
2008). Pellan et al. (2021) performed in vitro bioassay 
comparisons between F. graminearum and some BCAs 
including formulated P. oligandrum with use of detached 
spikelets of wheat. P. oligandrum was able to settle and 
colonize the lemma awn base palea and quickly produced 
a large quantity of characteristic oogonia containing 
oospores with no apparent symptoms on the spikelets 
(no loss of chlorophyll, necrosis, or desiccation) compared 
to those inoculated with F. graminearum. The treatment 
caused a significant level of inhibition with 77% reductions 
of external colonization of F. graminearum. Further 
integrative analysis showed that P. oligandrum-based 
commercially available preparations effectively reduced 
both vegetative and survival stages of F. graminearum; 
the recommended commercial use is limited to aerial 
parts. Recently, formulated P. oligandrum has been 
registered against ear fusarioses in EU, Sweden, Norway 
and US for the application on wheat and spring barley. 
Since DON, the main toxic metabolite of F. culmorum 
and F. graminearum, is a relatively common natural 
contaminant in barley, its traces can be detected in many 
commercial beers (Kostelanska et al., 2009). Results 
presented by Postulkova et al. (2018) clearly support the 
hypothesis that P. oligandrum can suppress fungal growth 
in barley during the malting process with higher efficiency 
than Geotrichum candidum, except G. candidum suppression 
of F. oxysporum growth on the artificially contaminated 
barley. The treatment by P. oligandrum in the steeping stage 
yielded an optimal suppression of Fusarium contamination 
(20%) and mycotoxin content (17% DON and 21% D3G) 
relative to untreated wheat malt (Ng et al., 2021b).
 Bacterial isolates from the genus Pseudomonas have 
been tested for their widespread distribution in soil, ability 
to colonize the rhizospheres of host plants and produce 
wide range of compounds antagonistic to serious plant 
pathogens (Foroutan, 2006). Some Pseudomonas sp. strains 
can protect barley from pathogenesis by Fusarium spp. 
fungi, including FHB (Vishnevskaya et al., 2020; Petti et al., 
2010; Khan et al., 2006). In the test for potential disease 
control organisms, two P.  fluorescens strains and one 
P. frederiksbergensis strain significantly reduced both 
the severity of FHB disease symptoms caused by F. culmorum 
on wheat and barley and the disease-associated loss in 
thousand grain weight in glasshouse and field conditions 
when applied preventively (Khan and Doohan, 2009). In 
the F. culmorum-inoculated field trials, the treatment with 
these P.  fluorescens strains also significantly reduced the 

DON levels in wheat and barley grain. Use of a short-lived 
isotopic tracer to monitor the delivery of photoassimilates 
into the barley roots infected by F. graminearum showed 
that Pseudomonas can reduce the pathogen pressure 
in plants, both by activating plant defense mechanisms and 
by direct production of antibiotics (Henkes et al., 2011). 
These effects are hard to distinguish under field conditions, 
impairing estimations of their relative contributions 
to the plant health. However, P. chlororaphis strain MA 342 
is widely registered for the field foliar applications in cereals 
including barley against foliar and ear pathogens (Dutilloy 
et al., 2022; EFSA, 2017). 
 Within the phylum of gram-positive Actinobacteria, 
Streptomyces is the largest genus (more than 500 species), 
famous for its ability to produce diverse assortments 
of secondary metabolites of which many have antibiotic 
activities and are used in medicine and agriculture. 
Indeed, these well-known antibiotic-producing bacteria 
can exert biocontrol in the soil. Besides the antibiotics, 
they also produce many other bioactive metabolites 
(Viaene et al., 2016) such as indole acetic acid (IAA; 
Colombo et al., 2019a) and hydrolytic enzymes responsible 
for the degradation of chitin (Umar et al., 2021) that form 
multiple mechanisms leading to limitation of FHB (Colombo 
et al., 2019b; Newitt et al., 2019). Streptomyces spp. can be 
exploited as the biocontrol agents against plant pathogens 
such as F. graminearum, the main causal agent of FHB 
and against the contamination of grain with DON (Colombo 
et al., 2020). The correlation between in vitro and in planta 
trials (Colombo et al., 2019b) for the application on barley 
is often poor, but one commercial product based on live 
Streptomyces spp. is currently available on the European 
market (Dutilloy et al., 2022). 
 A vast majority of the efforts to control fusariosis 
of cereals is based on Bacillus strains. Excellent antifungal 
activities were reported from field conditions evaluations 
(Mulk et al., 2022; Ntushelo et al., 2019) and several 
commercial products have been created (Jimenez-Quiros 
et al., 2022). However, despite the patented applications 
(Schisler et al., 2003), there is no available Bacillus-based 
commercial product registered to suppress FHB in barley.
 Yeasts are a group of Fusarium biocontrol agents 
that has recently been attracting increased attention 
of the scientists. Yeasts produced by organic agriculture 
show greater antagonistic activity against F. culmorum, 
F. graminearum and F. poae compared to those isolated 
from conventional cultivation systems. However, tested 
in vitro and applied to greenhouse and field grown wheat, 
neither Cryptococcus carnescens nor C.  flavescens were 
observed to compete for nutrients and inhibit Fusarium 
spore germination on malting barley (Podgorska-
Kryszczuk et al., 2022; Schisler et al., 2014).
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4 Conclusion

Evolutionary factors and the use of fungicides have resulted 
in more aggressive forms of the FHB pathogens (Fernando 
et al., 2021). Despite unique modes of action differing from 
conventional fungicides, registered bioagents have never 
been used on a mass scale. Most of the recent research 
studies emphasize the need of further testing in field 
conditions, which is complicated by a plethora of interfering 
environmental factors. Even the latest promising 
preparations based on endophytes isolated from a wild 
relative of barley Elymus repens (Hoyer et al., 2022), lactic 
acid bacteria (Byrne et al., 2022) or advanced techniques 
including the spray-induced gene silencing strategies 
(Werner et al., 2020) are no exception. From this point, 
weather is one of the most influencing factors of Fusarium 
infection and the production of mycotoxins in barley 
(Janssen et al., 2018; Malachova et al., 2010). It is necessary 
to emphasize the integration of prediction systems 
for cereals (Bondalapati et al., 2021; Marzec-Schmidt et al., 
2021; Shah et al., 2019; Schoneberg et al., 2018; Musa et 
al., 2007) and the use of the registered bio-preparations, 
like P. oligandrum-based products. When the critical rate 
of pathogen occurrence is exceeded, it is appropriate 
to consider chemical intervention or the subsequent 
introduction of bioagents into the malting process.
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