The role of acetic acid bacteria in brewing and their detection in operation

Authors

  • Petra Kubizniaková Research Institute of Brewing and Malting, Lípová 511/15, 120 00 Prague 2, Czech Republic
  • Lucie Kyselová Research Institute of Brewing and Malting, Lípová 511/15, 120 00 Prague 2, Czech Republic
  • Martina Brožová Research Institute of Brewing and Malting, Lípová 511/15, 120 00 Prague 2, Czech Republic
  • Katarína Hanzalíková Research Institute of Brewing and Malting, Lípová 511/15, 120 00 Prague 2, Czech Republic
  • Dagmar Matoulková Research Institute of Brewing and Malting, Lípová 511/15, 120 00 Prague 2, Czech Republic

DOI:

https://doi.org/10.18832/kp2021.67.511

Keywords:

aerobic bacteria, acetic acid bacteria, Acetobacter, Gluconobacter, biofilm, brewing

Abstract

Acetic acid bacteria (AAB) are often considered a threat of the past because today’s equipment allows to perform post-fermentation processes under greatly reduced level of oxygen. This paper deals with the current importance of AAB in brewing. The risk of contamination as well as functional role in spontaneously fermented sour beers is reviewed. The main harmful effect of AAB lies in the direct spoilage of draft beer and formation of biofilms, most often in dispensing systems. On contrary AAB seems to be indispensable in the case of sour beer production. A key issue of AAB in brewing environment is their (early) detection and identification. Therefore, part of this study is devoted to both the latest sophisticated methods and also those of traditional cultivation. which are still prevalent in operating laboratories due to their cost and easy implementation. Finally, the experimental and pictorial material is added as a guide for operations that have less experience with AAB.

References

Andorrà, I., Landi, S., Mas, A., Guillamón, J. M., Esteve-Zarzoso, B. (2008). Effect of oenological practices on microbial populations using culture-independent techniques. Food Microbiology, 25(7), 849–856. https://doi.org/10.1016/j.fm.2008.05.005

Back, W. (2005). Brewery. In W. Back (Ed.), Colour Atlas and Handbook of Beverage Biology (pp. 10–112). Nürnberg: Fachverlag Hans Carl.

Bartowsky, E. J., Xia, D., Gibson, R. L., Fleet, G. H., Henschke, P. A. (2003). Spoilage of bottled red wine by acetic acid bacteria. Letters in Applied Microbiology, 36(5), 307–314. https://doi.org/10.1046/j.1472-765X.2003.01314.x

Bartowsky, Eveline J., Henschke, P. A. (2008). Acetic acid bacteria spoilage of bottled red wine – a review. International Journal of Food Microbiology, 125(1), 60–70. https://doi.org/10.1016/j.ijfoodmicro.2007.10.016

Bokulich, N. A., Bamforth, C. W., Mills, D. A. (2012). Brewhouse-resident microbiota are responsible for multi-stage fermentation of American coolship ale. PloS One, 7(4), e35507. https://doi.org/10.1371/journal.pone.0035507

Cleenwerck, I., Vandemeulebroecke, K., Janssens, D., Swings, J. (2002). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. International Journal of Systematic and Evolutionary Microbiology. Microbiology Society. https://doi.org/10.1099/00207713-52-5-1551

De Roos, J., Verce, M., Aerts, M., Vandamme, P., De Vuyst, L., Schaffner, D. W. (2018). Temporal and spatial distribution of the acetic acid bacterium communities throughout the wooden casks used for the fermentation and maturation of lambic beer underlines their functional role. Applied and Environmental Microbiology, 84(7), e02846-17. https://doi.org/10.1128/AEM.02846-17

De Roos, J., De Vuyst, L. (2018). Acetic acid bacteria in fermented foods and beverages. Current Opinion in Biotechnology, 49, 115–119. https://doi.org/10.1016/j.copbio.2017.08.007

De Roos, J., Verce, M., Weckx, S., De Vuyst, L. (2020). Temporal shotgun metagenomics revealed the potential metabolic capabilities of specific microorganisms during lambic beer production. Frontiers in Microbiology, 11, 1692. https://doi.org/10.3389/fmicb.2020.01692

Dellaglio, F., Cleenwerck, I., Felis, G., Engelbeen, K., Janssens, D., Marzotto, M. (2005). Description of Gluconacetobacter swingsii sp nov and Gluconacetobacter rhaeticus sp nov., isolated from Italian apple fruit. International Journal of Systematic and Evolutionary Microbiology, 55(6), 2365–2370. https://doi.org/10.1099/ijs.0.63301-0

Gomes, R. J., Borges, M. de F., Rosa, M. de F., Castro-Gómez, R. J. H., Spinosa, W. A. (2018). Acetic acid bacteria in the food industry: systematics, characteristics and applications. Food Technology and Biotechnology, 56(2), 139–151. https://doi.org/10.17113/ftb.56.02.18.5593

González, Á., Guillamón, J. M., Mas, A., Poblet, M. (2006). Application of molecular methods for routine identification of acetic acid bacteria. International Journal of Food Microbiology, 108(1), 141–146. https://doi.org/10.1016/j.ijfoodmicro.2005.10.025

González, Á., Hierro, N., Poblet, M., Mas, A., Guillamón, J. M. (2005). Application of molecular methods to demonstrate species and strain evolution of acetic acid bacteria population during wine production. International Journal of Food Microbiology, 102(3), 295–304. https://doi.org/10.1016/j.ijfoodmicro.2004.11.020

González, Á., Hierro, N., Poblet, M., Mas, A., Guillamón, J. M. (2006). Enumeration and detection of acetic acid bacteria by real‐time PCR and nested PCR. FEMS Microbiology Letters, 254(1), 123–128. https://doi.org/10.1111/j.1574-6968.2005.000011.x

González, Á., Hierro, N., Poblet, M., Rozès, N., Mas, A., Guillamón, J. M. (2004). Application of molecular methods for the differentiation of acetic acid bacteria in a red wine fermentation. Journal of Applied Microbiology, 96(4), 853–860. https://doi.org/10.1111/j.1365-2672.2004.02220.x

Gullo, M., Caggia, C., Vero, L. D., Giudici, P. (2006). Characterization of acetic acid bacteria in “traditional balsamic vinegar.” International Journal of Food Microbiology, 106(2), 209–212. https://doi.org/10.1016/j.ijfoodmicro.2005.06.024

Gullo, M., Giudici, P. (2008). Acetic acid bacteria in traditional balsamic vinegar: Phenotypic traits relevant for starter cultures selection. International Journal of Food Microbiology, 125(1), 46–53. https://doi.org/10.1016/j.ijfoodmicro.2007.11.076

Gupta, A., Singh, V. K., Qazi, G. N., Kumar, A. (2001). Gluconobacter oxydans: its biotechnological applications. Journal of Molecular Microbiology and Biotechnology, 3(3), 445–456.

Hill, A. E. (Ed.). (2015). Brewing Microbiology. Managing Microbes, Ensuring Quality and Valorising Waste. Woodhead Publishing, pp. 506. ISBN 978-1-78242-331-7

Hommel, R. K., Ahnert, P. (1999). Acetobacter. In R. K. Robinson (Ed.), Encyclopedia of Food Microbiology (pp. 1–7). Oxford: Elsevier. https://doi.org/10.1006/rwfm.1999.0005

Ingledew, W. M. (1979). Effect of bacterial contaminants on beer. A review. Journal of the American Society of Brewing Chemists, 37(3), 145–150. https://doi.org/10.1080/03610470.1979.11960113

Jevons, A. L., Quain, D. E. (2021). Draught beer hygiene: use of microplates to assess biofilm formation, growth and removal. Journal of the Institute of Brewing, 127(2), 176–188. https://doi.org/10.1002/jib.637

Kersters, K., Lisdiyanti, P., Komagata, K., Swings, J. (2006). The Family Acetobacteraceae: The Genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The Prokaryotes: Volume 5: Proteobacteria: Alpha and Beta Subclasses (pp. 163–200). New York, NY: Springer New York. https://doi.org/10.1007/0-387-30745-1_9

Lisdiyanti, P., Kawasaki, H., Seki, T., Yamada, Y., Uchimura, T., Komagata, K. (2000). Systematic study of the genus Acetobacter with descriptions of Acetobacter indonesiensis sp. nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis (Henneberg 1906) comb. nov., Acetobacter lovaniensis (Frateur 1950) comb. nov., and Acetobacter estunensis (Carr 1958) comb. nov. The Journal of General and Applied Microbiology, 46(3), 147–165. https://doi.org/10.2323/jgam.46.147

Lynch, K., Zannini, E., Wilkinson, S., Daenen, L., Arendt, E. (2019). Physiology of acetic acid bacteria and their role in vinegar and fermented beverages. Comprehensive Reviews in Food Science and Food Safety, 18(3), 587–625. https://doi.org/10.1111/1541-4337.12440

Maifreni, M., Frigo, F., Bartolomeoli, I., Buiatti, S., Picon, S., Marino, M. (2015). Bacterial biofilm as a possible source of contamination in the microbrewery environment. Food Control, 50, 809–814. https://doi.org/10.1016/j.foodcont.2014.10.032

McDonnell, G., Russell, A. D. (1999). Antiseptics and disinfectants: activity, action, and resistance. Clinical Microbiology Reviews, 12(1), 147–179. https://doi.org/10.1128/CMR.12.1.147

Nanda, K., Taniguchi, M., Ujike, S., Ishihara, N., Mori, H., Ono, H., Murooka, Y. (2001). Characterization o facetic acid bacteria in traditional acetic acid fermentation of rice vinegar (komesu) and unpolished rice vinegar (kurosu) produced in Japan. Applied and Environmental Microbiology, 67(2), 986–990. https://doi.org/10.1128/AEM.67.2.986-990.2001

Papalexandratou, Z., Cleenwerck, I., De Vos, P., De Vuyst, L. (2009). (GTG)5-PCR reference framework for acetic acid bacteria. FEMS Microbiology Letters, 301(1), 44–49. https://doi.org/10.1111/j.1574-6968.2009.01792.x

Paradh, A. D. (2015). 8 - Gram-negative spoilage bacteria in brewing. In A. E. Hill (Ed.), Brewing Microbiology (pp. 175–194). Oxford: Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-331-7.00008-3

Parte, A. C., Sardà Carbasse, J., Meier-Kolthoff, J. P., Reimer, L. C., Göker, M. (2020). List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. International Journal of Systematic and Evolutionary Microbiology, 70(11), 5607–5612. https://doi.org/10.1099/ijsem.0.004332

Ploss, M. J., Erber, J. U., Eschenbecher, F. (1979). Die eissigäurebakterien in der brauerei. In Proceedings of the European brewery convention congress Berlin (pp. 521–532). Dordrecht: DSW.

Poblet, M., Rozès, N., Guillamón, J. M., Mas, A. (2000). Identification of acetic acid bacteria by restriction fragment length polymorphism analysis of a PCR-amplified fragment of the gene coding for 16S rRNA. Letters in Applied Microbiology, 31(1), 63–67. https://doi.org/10.1046/j.1472-765x.2000.00765.x

Ruiz, A., Poblet, M., Mas, A., Guillamón, J. M. (2000). Identification of acetic acid bacteria by RFLP of PCR-amplified 16S rDNA and 16S-23S rDNA intergenic spacer. International Journal of Systematic and Evolutionary Microbiology. Microbiology Society. https://doi.org/10.1099/00207713-50-6-1981

Saichana, N., Matsushita, K., Adachi, O., Frébort, I., Frebortova, J. (2015). Acetic acid bacteria: A group of bacteria with versatile biotechnological applications. Biotechnology Advances, 33(6, Part 2), 1260–1271. https://doi.org/10.1016/j.biotechadv.2014.12.001

Sakamoto, K., Konings, W. N. (2003). Beer spoilage bacteria and hop resistance. International Journal of Food Microbiology, 89(2), 105–124. https://doi.org/10.1016/S0168-1605(03)00153-3

Schoch, C. L., Ciufo, S., Domrachev, M., Hotton, C. L., Kannan, S., Khovanskaya, R., … Karsch-Mizrachi, I. (2020). NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database : The Journal of Biological Databases and Curation, 2020, baaa062. https://doi.org/10.1093/database/baaa062

Sengun, I. Y., Karabiyikli, S. (2011). Importance of acetic acid bacteria in food industry. Food Control, 22(5), 647–656. https://doi.org/10.1016/j.foodcont.2010.11.008

Sievers, M., Swings, J. (2015). Acetobacteraceae. In Bergey’s Manual of Systematics of Archaea and Bacteria (pp. 1–20). American Cancer Society. https://doi.org/10.1002/9781118960608.fbm00174

Snauwaert, I., Roels, S. P., Nieuwerburgh, F. V., Landschoot, A. V., Vuyst, L. D., Vandamme, P. (2016). Microbial diversity and metabolite composition of Belgian red-brown acidic ales. International Journal of Food Microbiology, 221, 1–11. https://doi.org/10.1016/j.ijfoodmicro.2015.12.009

Spitaels, F., Li, L., Wieme, A., Balzarini, T., Cleenwerck, I., Van Landschoot, A., … Vandamme, P. (2014). Acetobacter lambici sp. nov., isolated from fermenting lambic beer. International Journal of Systematic and Evolutionary Microbiology, 64(Pt4), 1083–1089. https://doi.org/10.1099/ijs.0.057315-0

Spitaels, F., Wieme, A., Balzarini, T., Cleenwerck, I., Van Landschoot, A., De Vuyst, L., Vandamme, P. (2014). Gluconobacter cerevisiae sp. nov., isolated from the brewery environment. International Journal of Systematic and Evolutionary Microbiology, 64(Pt4), 1134–1141. https://doi.org/10.1099/ijs.0.059311-0

Storgårds, E. (2000). Process hygiene control in beer production and dispensing (Espoo 2000). Finland: Technical Research Centre of Finland, VTT Publicatios. Retrieved from http://www.inf.vtt.fi/pdf/

Tanasupawat, S., Kommanee, J., Malimas, T., Yukphan, P., Nakagawa, Y., Yamada, Y. (2009). Identification of Acetobacter, Gluconobacter, and Asaia strains isolated in Thailand based on 16S-23S rRNA gene internal transcribed spacer restriction and 16S rRNA gene sequence analyses. Microbes and Environments, 24(2), 135–143. https://doi.org/10.1264/jsme2.ME08564

Timke, M., Wolking, D., Wang-Lieu, N. Q., Altendorf, K., Lipski, A. (2004). Microbial composition of biofilms in a brewery investigated by fatty acid analysis, fluorescence in situ hybridisation and isolation techniques. Applied Microbiology and Biotechnology, 66(1), 100–107. https://doi.org/10.1007/s00253-004-1601-y

Trcek, J, Ramus, J., Raspor, P. (1997). Phenotypic characterization and RAPD-PCR profiling of Acetobacter sp. isolated from spirit vinegar production. Food Technology and Biotechnology, 35(1), 63–67.

Trcek, J, Teuber, M. (2002). Genetic and restriction analysis of the 16S-23S rDNA internal transcribed spacer regions of the acetic acid bacteria. FEMS Microbiology Letters, 208(1), 69–75. https://doi.org/10.1016/S0378-1097(01)00593-6

Trcek, Janja. (2005). Quick identification of acetic acid bacteria based on nucleotide sequences of the 16S–23S rDNA internal transcribed spacer region and of the PQQ-dependent alcohol dehydrogenase gene. Systematic and Applied Microbiology, 28(8), 735–745. https://doi.org/10.1016/j.syapm.2005.05.001

Van Vuuren, H. J. J., Priest, F. G. (2003). Gram-negative brewery bacteria. In F. G. Priest & I. Campbell (Eds.), Brewing Microbiology (pp. 219–245). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4419-9250-5_6

Van Vuuren, H., Loos, M., Louw, H., Meisel, R. (1979). Distribution of bacterial contaminants in a South-African lager brewery. Journal Of Applied Bacteriology, 47(3), 421–424. https://doi.org/10.1111/j.1365-2672.1979.tb01202.x

Vero, L. D., Gala, E., Gullo, M., Solieri, L., Landi, S., Giudici, P. (2006). Application of denaturing gradient gel electrophoresis (DGGE) analysis to evaluate acetic acid bacteria in traditional balsamic vinegar. Food Microbiology, 23(8), 809–813. https://doi.org/10.1016/j.fm.2006.01.006

Vriesekoop, F., Krahl, M., Hucker, B., Menz, G. (2012). 125th Anniversary Review: Bacteria in brewing: The good, the bad and the ugly. Journal of the Institute of Brewing, 118(4), 335–345. https://doi.org/10.1002/jib.49

Vuyst, L. D., Camu, N., Winter, T. D., Vandemeulebroecke, K., Perre, V. V. de, Vancanneyt, M., … Cleenwerck, I. (2008). Validation of the (GTG)5-rep-PCR fingerprinting technique for rapid classification and identification of acetic acid bacteria, with a focus on isolates from Ghanaian fermented cocoa beans. International Journal of Food Microbiology, 125(1), 79–90. https://doi.org/10.1016/j.ijfoodmicro.2007.02.030

Wang, B., Shao, Y., Chen, F. (2015). Overview on mechanisms of acetic acid resistance in acetic acid bacteria. World Journal of Microbiology & Biotechnology, 31(2), 255–263. https://doi.org/10.1007/s11274-015-1799-0

Wieme, A. D., Spitaels, F., Aerts, M., De Bruyne, K., Van Landschoot, A., Vandamme, P. (2014). Identification of beer-spoilage bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. International Journal of Food Microbiology, 185, 41–50. https://doi.org/10.1016/j.ijfoodmicro.2014.05.003

Acetic acid bacteria on the agar plates.

Downloads

Published

2021-10-15

How to Cite

Kubizniaková, P., Kyselová, L., Brožová, M., Hanzalíková, K., & Matoulková, D. (2021). The role of acetic acid bacteria in brewing and their detection in operation. KVASNY PRUMYSL, 67(5), 511-522. https://doi.org/10.18832/kp2021.67.511
صندلی اداری سرور مجازی ایران Decentralized Exchange

Issue

Section

Articles
فروشگاه اینترنتی صندلی اداری