Evaluation of products for Drosophila suzukii control and their impact on grape quality
DOI:
https://doi.org/10.18832/kp2025.71.991Keywords:
grapevine, Drosophila suzukii, sour rot, kaolin, biostimulants, grape qualityAbstract
The pest Drosophila suzukii also causes significant damage to grapevine berries. Kaolin-based products and biostimulants were tested in an experiment to reduce the development of Drosophila suzukii and the development of sour rot, while the effect on grape quality parameters was also investigated. Surround, building kaolin, NovaFerm Orion, NovaFerm Sirius and Hycolat were tested on Riesling, Traminer and Palava varieties between 2023 and 2024. In terms of reducing damage to Drosophila suzukii berries, the most effective application was Surround (3%, 5%). From the biostimulants, NovaFerm Orion and Hycolat were the most effective. The same products also showed good efficacy in point of reducing the development of sour rot. In view of the effect on grape quality parameters, the most significant negative impact was on pH values. Rheinriesling and Traminer showed an increase in pH values compared to the untreated control. pH is a very important parameter in the context of grape processing and fermentation.
References
Asplen, M.K., Anfora, G., Biondi, A., Choi, D.-S., Chu, D., Daane, K.M., Gibert, P., Gutierrez, A.P., Hoelmer, K.A., Hutchison, W.D. (2015). Invasion biology of spotted wing Drosophila (Drosophila suzukii): A global perspective and future priorities. Journal of Pest Science, 88, 469–494. https://doi.org/10.1007/s10340-015-0681-z
Barata, A., Santos, S.C., Malfeito-Ferreira, M., Loureiro, V. (2012). New insights into the ecological interaction between grape berry microorganisms and Drosophila flies during the development of sour rot. Microbial Ecology, 64, 416–430. https://doi.org/10.1007/s00248-012-0041-y
Bernardo, S., Dinis, L.T., Machado, N., Barros, A., Pitarch‐Bielsa, M., Malheiro, A.C., Moutinho‐Pereira, J. (2022). Uncovering the effects of kaolin on balancing berry phytohormones and quality attributes of Vitis vinifera grown in warm‐temperate climate regions. Journal of the Science of Food and Agriculture, 102, 782–793. https://doi.org/10.1002/jsfa.11413
Boller, T. (1995). Chemoperception of microbial signals in plant cells. Annual Review of Plant Physiology and Plant Molecular Biology, 46, 189–214. https://doi.org/10.1146/annurev.pp.46.060195.001201
Boller, T., Felix, G. (2009). A ranaissance of elicitors: peception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of. Plant Biology, 60, 379–406. https://doi.org/10.1146/annurev.arplant.57.032905.105346
Brillante, L., Belfiore, N., Gaiotti, F., Lovat, L., Sansone, L., Poni, S. (2016). Comparing kaolin and pinolene to improve sustainable grapevine production during drought. Plos One, 11(6), e0156631. https://doi.org/10.1371/journal.pone.0156631
Bulgari, R., Cocetta, G., Trivellini, A., Vernieri, P.A.O.L.O., Ferrante, A. (2015). Biostimulants and crop responses: a review. Biological Agriculture & Horticulture, 31(1), 1–17. https://doi.org/10.1080/01448765.2014.964649
Cao, X., Wang, Y., Wang, Z., Tian, X., Han, X., Wu, D., Yao, F., Hui, M., Li, H., Wang, H. (2023). Effects of kaolin particle film coatings on the watersaving efficiency and fruit quality of Cabernet Sauvignon (Vitis vinifera L.) grape plants in the Ningxia region of China. Horticulture, Environment, and Biotechnology, 64, 421–435. https://doi.org/10.1007/s13580-022-00498-4
Cataldo, E., Fucile, M., Mattii, G.B. (2022). Effects of kaolin and shading net on the ecophysiology and berry composition of Sauvignon blanc grapevines. Agriculture, 12(4), 491. https://doi.org/10.3390/agriculture12040491
Colla, G., Rouphael, Y., Canaguier, R., Svecova, E., Cardarelli, M. (2014). Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Frontiers in Plant Science, 5, 448. https://doi.org/10.3389/fpls.2014.00448
Conde, A., Pimentel, D., Neves, A., Dinis, L.T., Bernardo, S., Correia, C.M. (2016). Kaolin foliar application has a stimulatory effect on phenyl propanoid and flavonoid pathways in grape berries. Frontiers in Plant Science, 7, 1150,1–14. https://doi.org/10.3389/fpls.2016.01150
De Vasconcelos, A.C.F., Garófalo-Chaves, L.H. (2019). Biostimulants and their role in improving plant growth under abiotic stresses. Biostimulants in Plant Science. IntechOpen ,3–16. https://doi.org/10.5772/intechopen.88829
Dinis, T., Bernardo, S., Conde, A., Pimentel, D., Ferreira , H., Felix, L. (2016). Kaolin exogenous application boost antioxidant capacity and phenolic content in berries and leaves of grapevine under summer stress . Journal of Plant Physiology, 191, 45–53. https://doi.org/10.1016/j.jplph.2015.12.005
Dinis, T., Malheiro, C., Luzio, A., Fraga, H., Ferreira, H., Goncalves, I. (2018). Improvement of grapevine physiology and yield under summer stress by kaolin-foliar application, water relations, photosynthesis and oxidative damage. Photosynthetica, 56,10–17. https://doi.org/10.1007/s11099-017-0714-3
Eben, A., Reifenrath, M., Briem, F., Pink, S., Vogt, H. (2018). Response of Drosophila suzukii (Diptera: Drosophilidae) to extreme heat and dryness. Agricultural and Forest Entomology, 20, 113–121. https://doi.org/10.1111/afe.12235
Entling W, Hoffmann C. (2020). Single and combined effects of Drosophila suzukii and Drosophila melanogaster on sour rot development in viticulture. Journal of Applied Entomology, 144, 153–160. https://doi.org/10.1111/jen.12721
Ferrari, V., Disegna, E., Dellacassa, E., Coniberti, A. (2017). Influence of timing and intensity of fruit zone leaf removal and kaolin applications on bunch rot control and quality improvement of Sauvignon blanc grapes, and wines, in a temperate humid climate. Scientia Horticulturae, 223, 62–71. https://doi.org/10.1016/j.scienta.2017. 05.034
Frioni, T., Tombesi, S., Luciani, E., Sabbatini, P., Berrios, J.G., Palliotti, A. (2019). Kaolin treatments on Pinot noir grapevines for the control of heat stress damages. BIO Web of Conferences, 13, 04004. https://doi.org/10.1051/bioconf/20191304004
Glenn, M., Puterka, G.J., Vanderzwe, J., Byers, T.E., Feldhake, C. (1999). Hydrophobic particle films: A new paradigm for suppression of arthropod pests and plant diseases. Journal of Economic Entomology, 92, 759–771. https://doi.org/10.1093/jee/92.4.759
Glenn, D.M., Puterka, G.J. (2004). Particle films: A new technology for agriculture. In Janick, J. (ed.) Horticultural Reviews, 1–44. Wiley. https://doi.org/10.1002/9780470650882.ch1
Gump, B.H., Zoecklein, B.W., Fugelsang, K.C., Whiton, R.S. (2002). Comparison of analytical methods for prediction of prefermentation nutritional status of grape juice. American Journal of Enology and Viticulture, 53, 325–329. https://doi.org/10.5344/ajev.2002.53.4.32
Gutierrez, A.P., Ponti, L., Dalton, D.T. (2016). Analysis of the invasiveness of spotted wing drosophila (Drosophila suzukii) in north America, Europe, and the mediterranean basin. Biological Invasions, 18, 3647–3663. https://doi.org/10.1007/s10530-016-1255-6
Hartman, J.R. and Kaiser, C.A. (2008). Fruit rots of grape. Plant Pathology Fact Sheet. Cooperative Extension Service, University of Kentucky College of Agriculture, Lexington, KY.
Iland, P., Ewart, A., Sitters, J., Markides, A., Bruer, N. (2000). Techniques for Chemical Analysis and Quality Monitoring during Winemaking. Campbelltown: Patrick Iland Wine Promotions, 6–7. ISBN 9780646384351
Ioriatti, C., Guzzon, R., Anfora, G., Ghidoni, F., Mazzoni, V., Villegas, T.R., Dalton, D.T., Walton, V.M. (2018). Drosophila suzukii (Diptera: Drosophilidae) contributes to the development of sour rot in grape. Journal of Economic Entomology, 111, 283–292. https://doi.org/10.1093/jee/tox292
Jackson, R.S. (2008). Wine Science: Principles and Applications. Cambridge, Massachusetts, USA: Academic Press. https://doi.org/10.1016/B978-0-12-373646-8.X5001-X, ISBN 978-0-12-373646-8
Kienzle, R., Groß, L.B., Caughman, S., Rohlfs, M. (2020) Resource use by individual Drosophila suzukii reveals a flexible preference for oviposition into healthy fruits. Scientific Reports, 10, 3132. https://doi.org/10.1038/s41598-020-59595-y
Kok, D., Bal, E. (2018). Leaf Removal treatments combined with kaolin particle film technique from different directions of grapevine’s canopy affect the composition of phytochemicals of cv. Muscat Hamburg (V. vinifera L.). Erwerbs-Obstbau, 60, 39‑45. https://doi.org/10.1007/s10341-017-0337-7
Leach, H., van Timmeren, S., Wetzel, W., Isaacs, R. (2019). Predicting within-and between-year variation in activity of the invasive spotted wing drosophila (Diptera: Drosophilidae) in a temperate region. Environmental Entomology, 48,1223–1233. https://doi.org/10.1093/ee/nvz101
Lee, J.C., Bruck, D.J., Dreves, A.J., Ioriatti, C., Vogt, H., Baufeld, P. (2011). In Focus: Spotted wing drosophila, Drosophila suzukii, across perspectives. Pest Management Science, 67, 1349–1351. https://doi.org/10.1002/ps.2271
Linder, C., Kehrli, P., Gölles, M. (2018). Drosophila suzukii en Viticulture. Recommandations 2018. Plant Agroscope Fiche Technique, No. 77. Available from: https://www.agroscope.admin.ch/agroscope/en/home/topics/environment-resources/monitoring-analytics/publications/_jcr_content/par/externalcontent.bitexternalcontent.exturl.html/aHR0cHM6Ly9pcmEuYWdyb3Njb3BlLmNoL2ZyLUNIL1BhZ2UvUH/VibGlrYXRpb24_ZWluemVscHVibGlrYXRpb-25JZD0zOTEwNSZw/YXJlbnRVcmw9JTJmZnItQ0glMmZQYWdlJTJmUHVibGlrYXRpb2/5zbGlzdGUlMmZJbmRleE1pdGFyYmVpdGVy-JTNmYWdyb3Njb3Bl/SWQlM2QxNTg4JTI2cGFnZSUzZDQ=.html
Lobos, G.A., Acevedo-Opazo, C., Guajardo-Moreno, A., Valdes-Gomez, H., Taylor, J.A., Felipe Laurie, V. (2015). Effects of kaolin-based particle film and fruit zone netting on Cabernet Sauvignon grapevine physiology and fruit quality. OENO One, 49, 137–144. https://doi.org/10.20870/oeno-one.2015.49.2.86
Luzio, A., Bernardo, S., Correia, C., Moutinho-Pereira, J., Dinis, L.T. (2021). Phytochemical screening and antioxidant activity on berry, skin, pulp and seed from seven red Mediterranean grapevine varieties (Vitis vinifera L.) treated with kaolin foliar sunscreen. Scientia Horticulturae, 281, 109962. https://doi.org/10.1016/j.scienta.2021.109962
Mackie-Hass, K. (2024). Essigfäule im Rebbau: Ws steckt dahinter? Schweizer Zeitschrift für Obst- und Weinbau, 12, 8.
Meggio, F., Trevisan, S., Manoli, A., Ruperti, B., Quaggiotti, S. (2020). Systematic investigation of the effects of a novel protein hydrolysate on the growth, physiological parameters, fruit development and yield of grapevine (Vitis vinifera L., cv Sauvignon Blanc) under water stress conditions. Agronomy, 10(11), 1785. https://doi.org/10.3390/agronomy10111785
Pérez-Guerrero, S., Molina, J.M. (2016). Laboratory approach to the use of sulphur and kaolin as preventive control against Drosophila suzukii. Spanish Journal of Agricultural Research, 14(2), e10SC01–e10SC01.
Plantevin, M., Merpault, Y., Lecourt, J., Destrac-Irvine, A., Dijsktra, L., van Leeuwen, C. (2024). Characterization of varietal effects on the acidity and pH of grape berries for selection of varieties better adapted to climate change. Frontiers in Plant Science, 15, 1439114. https://doi.org/10.3389/fpls.2024.1439114
Poyet, M., Le Roux, V., Gibert, P., Meirland, A., Prevost, G., Eslin, P., Chabrerie, O. (2015). The wide potential trophic niche of the Asiatic fruit fly Drosophila suzukii: the key of its invasion success in temperate Europe? PloS one, 10(11), e0142785. https://doi.org/10.1371/journal.pone.0142785
Ribéreau-Gayon, P., Dubourdieu, D., Doneche, B., Lonvaud, A. (2012). Traité d’oenologie – Tome 1 – 6e éd. – Microbiologie du vin. Vinifications. Malakoff, France: Dunod, 704 p. ISBN 9782100588749
Riedle-Bauer, M., Madercic, M., Hanak, K., Tiefenbrunner, W. (2020). Susceptibility of wine grapes to Drosophila suzukii – a three year field and laboratory study in Austria. Mitteilungen Klosterneuburg, 70, 219–232.
Saavedra, T., Gama, F., Correia, P.J., Da Silva, J.P., Miguel, M.G., de Varennes, A., Pestana, M. (2020). A novel plant extract as a biostimulant to recover strawberry plants from iron chlorosis. Journal of Plant Nutrition, 43, 2054–2066. https://doi.org/10.1080/01904167.2020.1766079
Sangiorgio, D., Cellini, A., Donati, I., Pastore, C., Onofrietti, C., Spinelli, F. (2020). Facing climate change: Application of microbial biostimulants to mitigate stress in horticultural crops. Agronomy, 10, 794. https:// doi.org/10.3390/agronomy10060794
Sangiorgio, D., Valentini, G., Pastore, C., Allegro, G., Gottardi, D., Patrignani, F., Filippetti, I. (2024). A comprehensive study on the effect of foliar mineral treatments on grapevine epiphytic microorganisms, flavonoid gene expression, and berry composition. OENO ONE, 58, 1–11. https://doi.org/10.20870/oeno-one.2024.58.3.7973
Sharma, R.R., Reddy, S.V, Datta, S.C. (2015) Particle lms and their applications in horticultural crops. Applied Clay Science, 116, 54–68. https://doi.org/10.1016/j.clay.2015.08.009
Shellie, K. ,Glenn, D.M. (2008). Wine grape response to foliar particle film under differing levels of preveraison water stress. HortScience. 43, 1392–1397. https://doi.org/10.21273/hortsci.43.5.1392
Shellie, K.C., King, B.A. (2013). Kaolin particle film and water deficit influence red winegrape color under high solar radiation in an arid climate. American Journal of Enology and Viticulture, 64, 214–22. https://doi.org/10.5344/ajev.2013.12067
Teker, T. (2023). A study of kaolin effects on grapevine physiology and its ability to protect grape clusters from sunburn damage. Scientia Horticulturae, 311, 111824. https://doi.org/10.1016/j.scienta.2022.111824
Teklić, T., Parađiković, N., Špoljarević, M., Zeljković, S., Lončarić, Z., Lisjak, M. (2021). Linking abiotic stress, plant metabolites, biostimulants and functional food. Annals of Applied Biology, 178, 169–191. https://doi.org/10.1111/aab.12651
Tungadi, T. D., Powell, G., Shaw, B., & Fountain, M. T. (2023). Factors influencing oviposition behaviour of the invasive pest, Drosophila suzukii, derived from interactions with other Drosophila species: potential applications for control. Pest Management Science, 79, 4132–4139. https://doi.org/10.1002/ps.7693
Van Leeuwen C., Sgubin G., Bois B., Ollat N., Swingedouw D., Zito S. (2024). Climate change impacts and adaptations of wine production. Nature Reviews Earth & Environment, 5, 258–275. https://doi.org/10.1038/s43017-024-00521-5
Walsh, D.B., Bolda, M.P., Goodhue, R.E., Dreves, A.J., Lee, J., Bruck, D.J., Walton, V.M., O’Neal, S.D., Zalom, F.G. (2011). Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. Journal of Integrated Pest Management, 2, 1–7. https://doi.org/10.1603/IPM10010.
Wang, X.-G., Stewart, T.J., Biondi, A., Chavez, B.A., Ingels, C., Caprile, J., Grant, J.A., Walton, V.M., Daane, K.M. (2016). Population dynamics and ekology of Drosophila suzukii in Central California. Journal of Pest Science, 89, 701–712. https://doi.org/10.1007/s10340-016-0747-6
Wang, Y., Han, Y., Han, X., Wang, Z., Xue, T., Ye, Q., Li, H. (2022). Kaolin particle film protects grapevine cv. Cabernet Sauvignon against downy mildew by forming particle film at the leaf surface, directly acting on sporangia and inducing the defense of the plant. Frontiers in Plant Science, 3, 88–103. https://doi.org/10.3389/fpls.2021.796545
Weißinger, L., Schrieber, K., Breuer, M., Müller, C. (2019). Influences of blackberry margins on population dynamics of Drosophila suzukii and grape infestation in adjacent vineyards. Journal of Applied Entomology, 143, 802–812. https://doi.org/10.1111/jen.12669
Weißinger, L., Arand, K., Bieler, E., Kassemeyer, H.H., Breuer, M., Müller, C. (2021). Physical and chemical traits of grape varieties influence Drosophila suzukii preferences and performance. Frontiers in Plant Science, 12, 664636. https://doi.org/10.3389/fpls.2021.664636
Yakhin, O.I., Lubyanov, A.A., Yakhin, I.A., Brown, P.H. (2017). Biostimulants in plant science: A global perspective. Frontiers in Plant Science, 7, 2049. https://doi.org/10.3389/fpls.2016.02049
Yazici, K., Kaynak, L. (2006). Effects of kaolin and shading treatments on sunburn on fruit of Hicaznar cultivar of pomegranate (Punica granatum L. cv. Hicaznar). In: International Symposium on Pomegranate and Minor Mediterranean Fruits, 818, 167–174. https://doi.org/10.17660/ActaHortic.2009.818.24
Zhu, L., Xue, Q., Ma, G., Ma, C.S. (2023). Climate warming exacerbates plant disease through enhancing commensal interaction of co-infested insect vectors. Journal of Pest Science, 96, 945–959. https://doi.org/10.1007/s10340-022-01574-5

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Pavel Pavloušek, Zdeněk Svoboda, Ivana Flajšingerová

This work is licensed under a Creative Commons Attribution 4.0 International License.